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Abstract

The objective of this paper is to demonstrate the effect of active damping on regenerative chatter instability for a turning

operation. Two approaches are used for this purpose. In the first approach, the traditional stability analysis technique in

Altintas [Manufacturing Automation, Cambridge University Press, Cambridge, 2000. [1]] and other works is adopted and a

correlation between the chip shape (which is dependent on the spindle speed) and the system damping is presented. It is

shown that different spindle speeds cause changes in the system damping, resulting in different levels of stability limits at

different spindle speeds. A second approach involves plotting of the root locus of the system poles with increasing axial

width of cut. This study presents a different perspective to the problem. It is shown that the low and high stability regions

of the stability lobe diagram are due to different relative positions of the poles and zeros of the system. Active damping is

proposed as a strategy to enhance the stability limits of the system. The effect of active damping is studied by the two

approaches, mentioned above, both showing that active damping can successfully enhance the stability limits, particularly

in the low stability regions.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Machine tool chatter is a vibrational instability of the metal-cutting process and is a popular topic for
academic and industrial research [1]. Although there are many mechanisms of chatter instability, as mentioned
in Budak et al. [2], instability due to regeneration of surface waviness, demonstrated by Tobias et al. [3] and
Tlusty [4], is by far the most common cause of chatter. Fig. 1 shows the regeneration process in an orthogonal
cutting operation, where the tool is cutting a flexible cylindrical surface. While machining, due to vibrations, a
wavy surface is left behind on the workpiece and after one full rotation the tool faces the waves left during the
previous pass. This is the process of regeneration. Regenerative chatter was proposed as a closed-loop
interaction between the structural dynamics and the cutting process by Merrit [5]. Assuming the workpiece to
be flexible only in the y-direction, the uncut chip thickness hðtÞ at any instant is given by

hðtÞ ¼ h0 þ yðt� TÞ � y, (1)

where h0 is the constant feed of the tool, y and yðt� TÞ are the displacements of the workpiece during the
current and previous pass of the tool on the workpiece and T ¼ 60=N is the time of one revolution of the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. The regeneration process.
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workpiece, with N as the rotational speed. Assuming that the cutting forces are proportional to the frontal
area of the chip, the cutting force in the y-direction is equal to

F cðtÞ ¼ Kf a½h0 þ yðt� TÞ � y�, (2)

a is the axial width of cut, measured in a direction perpendicular to the page and Kf is the cutting force
constant. However, the cutting force and the chip thickness relationship is nonlinear and has been formulated
through a power law in Taylor [6]. The nonlinearity in the cutting force and chip thickness relationship
explains the subcritical Hopf Bifurcation phenomenon, as observed in Tobias et al. [7]. In a linear analysis,
beyond a certain value of axial width of cut, the oscillations of the machine tool and workpiece system become
unbounded. In reality, due to nonlinearity arising from the cutting process or the structure or both [8] and due
to the tool loosing contact with the workpiece [9,10], chatter manifests as high-amplitude-bounded oscillations
called the limit cycle. The phenomenon is ‘‘subcritical’’ since the limit cycle continues to sustain itself at an
axial width of cut lower than that predicted by the linear analysis. The nature of the phenomenon is therefore
hysteric, as predicted in Nagy et al. [11,12]. Further developments on the nonlinear dynamic analysis of
regenerative chatter can be found in Refs. [13,14].

Damping from the cutting process and the machine tool structure are found to stabilize the machining
process. Cutting process damping arises from the rubbing between the flank edge of the tool and the
workpiece surface, leading to a dissipation of energy and stabilization of the cutting operation. This has been
dealt with in Refs. [3,15–17]. Since the present work deals with the relationship between regenerative chatter
instability and structural damping, the stabilizing effect of cutting process damping is ignored in the
formulations. Enhancement of structural damping is possible by passive or active techniques and present
study proposes the latter as a chatter suppression strategy. The authors present a physical explanation of the
role of structural damping in the phenomenon and the linear simplified cutting force model of Eq. (2) is
adopted. Nonlinearities in the cutting process are beyond the scope of the current work. However, Pratt et al.
[18–20] have shown experimental evidence of enhancement of axial depths of cut, due to application of active
damping, even in the presence of nonlinearities in the system.

This paper is organized as follows: Section 2 discusses about the relationship between stability limits, spindle
speed and structural damping using the traditional stability analysis technique. Section 3 uses the Root Locus
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technique to provide a pole-zero perspective to the ideas developed in Section 2. Section 4 discusses about the role
of active damping in stabilization of regenerative chatter instability and its efficiency at various spindle speeds.

2. Discussions from traditional stability analysis perspective

Following the single-degree of freedom (sdof) orthogonal model of cutting, the dynamic equation of motion
can be written as

m €yþ c _yþ ky ¼ Kf a½h0 þ yðt� TÞ � y�, (3)

where m, c and k are the mass, damping coefficient and stiffness of the workpiece in the y direction. Eq. (3) is a
time-invariant Delay Differential equation. In Laplace domain yðt� TÞ ¼ yðsÞe�sT . Defining the machine-tool
transfer function between the applied force Fc and displacement y as GðsÞ and substituting for yðt� TÞ, we
have in Laplace domain

hðsÞ

h0ðsÞ
¼

1

1þ Kf aGðsÞð1� e�sT Þ
, (4)

where

GðsÞ ¼
yðsÞ

F cðsÞ
¼

1

ms2 þ csþ k
. (5)

Therefore the characteristic equation of the closed-loop system is

1þ KcutGðsÞð1� e�sT Þ ¼ 0, (6)

where Kcut ¼ Kf a. From Eq. (6), Kcut can be derived as

Kcut ¼
�1

GðsÞð1� e�sT Þ
. (7)

Eq. (6) is not restricted to a sdof oscillator but can also be extended to single-input single-output (SISO)
systems with multiple degrees of freedom, provided the appropriate expression for GðsÞ is used. Following the
traditional stability analysis technique as described in Altintas [1] and assuming that the system is at the
stability limit and oscillating harmonically with chatter frequency oc, s ¼ joc is substituted in Eq. (6).
Equating the real and imaginary parts to zero and with some mathematical manipulation, the following
relationships are obtained:

K lim ¼
�1

2ReðGðjocÞÞ
, (8)

ocT ¼ 2pp� 2 tan�1
ReðGðjocÞÞ

ImðGðjocÞÞ

� �
¼ 2pp� �, (9)

where p ¼ 0; 1; . . . and � ¼ 2 tan�1
ReðGðjocÞÞ

ImðGðjocÞÞ

� �
. K lim is inversely proportional to ReðGðsÞÞ. Since stability

limit is a physical quantity and is positive, Eq. (8) for a sdof system is valid for values of oc, higher than the
natural frequency of the machine tool structure, where ReðGðsÞÞ is less than zero. This proves that chatter
frequencies should be higher than the natural frequency in a sdof turning operation.

The plot of the stability limit and the chatter frequency, obtained by solving Eqs. (8) and (9) for various
spindle speeds is the traditional stability lobe diagram. An example of sdof cutting operation with a rigid tool
and flexible workpiece, modeled as a simply supported rectangular steel beam is solved with the traditional
stability analysis technique. The corresponding tool point transfer function GðsÞ in modal coordinates is
given by

GðsÞ ¼
Xn

i¼1

f2
i ðxaÞ

miðs
2 þ 2xioi þ o2

i Þ
, (10)
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Fig. 2. (a) The stability lobe diagram, (b) chatter frequencies and (c) phase difference between successive undulations.
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where n is the number of modes considered, mi, xi and oi are the modal mass, damping and frequency of the
ith mode and fiðxaÞ is the mode shape calculated at the location of the tool, xa on the beam. For
demonstration purposes n ¼ 1 is assumed in the calculations. The data for the calculation are: Young’s
modulus ¼ 210Mpa, length of beam l ¼ 1m, width w ¼ 0:01m, height h ¼ 0:02m, xa ¼ l=8 and density
r ¼ 7800 kg=m3. The modal damping ratio x is assumed to be 1%. The beam is assumed to bend along the
stiffer direction. Therefore, the natural frequency is about 47Hz.

In Figs. 2a–c, the stability limits are presented and the various lobes are numbered according to the value of
p, used in the calculation (p ¼ 0, 1, 2 are used in the calculations). One can observe a repetition of the lobes,
which arises from the trigonometric nature of Eq. (9). There is an overlap between successive lobes at certain
spindle speeds. From the viewpoint of stability limit, the lower limit and the corresponding chatter frequency
should be considered. Around the intersection points A and B, there is a jump in the chatter frequency and an
abrupt change in the value of ocT .

Physically ocT is the total angular displacement of the oscillating tool, vibrating with frequency oc during
one period of revolution T. p is the number of complete waves traversed by the tool. Therefore, ocT is directly
related to the phase difference between successive undulations on the workpiece surface, as shown in Fig. 3.
The implications of this phase difference on the stability of the system are now analyzed by considering four
representative spindle speeds in Figs. 2a–c. The stability limits for 2700, 2840 and 8000 rev/min are high and
almost identical, but the chatter behavior, for these three cases is different. For 2700 and 8000 rev/min, the
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phase ocT is close to an odd multiple of p. For 2840 rev/min, where ocT ¼ 2p and the chatter frequency oc

and also the spindle speed frequency 1=T are nearly equal to the natural frequency of 47Hz. For 3790 rev/min,
ocT ¼ 3p=2 ¼ 270� and the stability limit is the lowest. The correlation between the stability limit and phase
difference between successive modulations of the chip thickness is being addressed now.

Writing Eq. (3) in frequency domain, we have

ð�mo2
c þ joccþ kÞY ðjocÞ ¼ Kcut½h0 � ð1� e�jocT ÞY ðjocÞ�. (11)

Since the effect of the feed can be neglected in a linear analysis, the dynamic equation of motion can be
written as

�mo2
c þ joc cþ Kcut

sinocT

oc

� �
þ ðk þ Kcut � Kcut cosocTÞ

� �
Y ðjocÞ ¼ 0. (12)

It is observed in Eq. (12), that the damping and the stiffness of the system in the closed loop are frequency
dependent, due to the term ocT . Equating the real and the imaginary parts to zero, the values of Kcut and oc

at the stability limit can be obtained. A direct relationship between the phase term ocT , the damping
coefficient and the stability limit is demonstrated by the following equation:

K lim ¼ �c
oc

sinocT
. (13)

Eq. (13) shows a proportional relationship between K lim and the damping coefficient, which implies that
higher axial widths of cut may be achieved without chatter by enhancing structural damping. Considering the
expression of stiffness in Eq. (12), it can be seen that there is a general stiffening of the structure due to
regeneration process. For ocT approaching an odd multiple of p, K lim tends to infinity. High stability limits
are observable for 2700 and 8000 rev/min in Fig. 2a, for which the phase differences are nearly 180� and 540�,
respectively. For the phase difference equal to 360� or its even multiple, the stability limit is also infinity, from
Eq. (13). This occurs for 2840 rev/min (Refer to Figs. 2a–c), where the spindle speed frequency, 1=T , is close to
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the natural frequency. sinocT has a minimum value of �1, for ocT ¼ 3p=2. Therefore a low value of Kcut is
obtained from Eq. (13). This explains the low stability for 3790 rev/min, for which the phase difference is equal
to 3p=2. A plot of oc= sinocT is shown in Fig. 4a. The discussion demonstrates the relationship between
stability limits, structural damping and ocT , i.e., the shape of the chip.

The vibrational behaviors for 2700, 2840 and 8000 rev/min are qualitatively different even though
the stability limits may be nearly equal to one another. In region 1 in Fig. 4b (2840 rev/min left end of lobe 1),
the chip thickness is constant, due to the successive modulations of the chip thickness being in phase. Thus the
structure will not be excited dynamically and ideally there is no possibility of chatter. For regions 3 and 4
(2700 and 8000 rev/min, right ends of lobes 2 and 1), the shape of the chip is highly deformed due to the
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successive undulations, being out of phase. This implies a strongly dynamic excitation force. However, the
closed-loop stiffness, depicted by the third term in Eq. (12), has a maximum value of k þ 2Kcut. The qualitative
differences in the behaviors in the two cases are observable in the time history plots of the force and
displacement in Fig. 5. The absence of the regenerative effect for 2840 rev/min causes the force to stabilize to a
constant value. In the case of 2700 rev/min, even though the force amplitude is high, the displacement level is
almost identical to that of 2840 rev/min. The existence of a higher closed-loop stiffness explains this behavior.
The section shows the qualitative difference between the instabilities in the high stability regions of the
stability lobe diagram and this knowledge is not very obvious.
3. Analysis by Root Locus plots

The previous section shows a correlation between spindle speeds, the closed-loop damping, the shape of the
chip and the different levels of stability limits. The Root Locus method is used to investigate the correlation
from a pole-zero perspective. Eq. (6) can be viewed as the characteristic equation of a classical closed-loop
system with unit feedback, as shown in Fig. 6. GðsÞð1� e�sT Þ is the open-loop transfer function and Kcut is the
feedback gain. The closed-loop poles follow the corresponding root locus for increasing Kcut and the stability
limit is reached when at least a couple of conjugate roots cross the imaginary axis. The transcendental part of
the open loop transfer function, i.e., the delay term, gives rise to a system of time-invariant delay differential
equation with infinite number of roots. It is approximated by Padé Approximation [21]. An explanation on the
order of Padé Approximation to be assumed is presented in Ganguli et al. [22].
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Eq. (6) generates two limit cases, depending on the value of Kcut.
�
 For Kcut ! 0, the roots are the poles of GðsÞð1� e�sT Þ which are the poles of GðsÞ and an infinite number of
poles of ð1� e�sT Þ at s ¼ �1� jð2np=TÞ, where j ¼

p
� 1 and n is any integer.
�
 For cases where Kcut !1, the roots are the zeros of GðsÞð1� e�sT Þ, which are the zeros of GðsÞ and the
infinite number of zeros of ð1� e�sT Þ at s ¼ �jð2np=TÞ.

This is discussed by Olgac et al. [23]. Fig. 7 shows the evolution of the poles for a sdof system. For low values
of Kcut the pole (denoted by a cross), closest to the imaginary axis, is a structural pole. The rest of the poles,
due to the delay term, ideally should be at infinite distance from the imaginary axis. But due to the
approximation of the delay term and a non-zero initial value of Kcut, they are seen at finite but large distances
from the imaginary axis. With increasing value of Kcut, all the roots approach the imaginary axis, implying a
reduction in the damping of the closed-loop system. Instability occurs when they cross the imaginary axis and
with further increase in Kcut, the poles ultimately converge to the zeros at s ¼ �jð2np=TÞ, i.e. s=2p ¼ �jðn=TÞ
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in Hz units, where n as any integer. So the zeros of the system, due to the delay, are at harmonics of the spindle
speed frequency. Traditional techniques of chatter analysis generally recognize that instability arises from the
structural mode of the system. However, there is always a possibility, that the roots due to the delay may cross
over to the right side of the imaginary axis before a structural pole does at certain spindle speeds. Thus,
different regions of the stability lobe diagram can be characterized, depending on whether the source of
instability is a structural pole or a delay pole. Fig. 8 shows the stability lobe diagram and the chatter frequency
diagrams for the SISO system example of the previous section. Different regions of the stability lobe and
chatter frequency diagram are distinguished on the basis of the source of instability. The regions have been
distinguished by following the locus of the closed-loop poles for increasing values of Kcut and identifying
which root is contributing to the instability. It is observed that certain portions of the high stability regions are
due to instability of the delay pole. This is not very apparent from traditional stability analysis techniques. The
Root Locus plots for the SISO example are examined for the representative spindle speeds of the previous
section. The loci of the eigenvalues are plotted beyond the stability limit to show the direction of migration of
the roots. The stable loci of the system is marked with a thin line and the unstable with a thicker line. It is seen
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in Fig. 9, that a reduction of the spindle speed, causes the poles and the zeros, due to the delay, to migrate
towards the real axis. The proximity of the zero to the structural pole, determines the length of the locus to
instability. A relatively distant location of the zero, for 8000 rev/min, in comparison to 3790 rev/min, causes a
longer locus of the structural pole to instability, resulting in higher stability in the former case. This is
demonstrated in Figs. 9a and b. In Fig. 9c, for 2840 rev/min, the location of the zero in close proximity to the
structural pole is causing a near pole-zero cancellation. The advancement of the pole towards instability is
nullified and a very high value of Kcut is required to make the system unstable. The crossing of the pole to
instability is very close to the natural frequency of the structure, indicating chatter frequency close to the
natural frequency. For 2700 rev/min, the zero migrates to a position below the structural pole. The close
proximity of the zero to the pole also has a pole-zero cancellation effect and the structural pole does not
contribute to instability. The instability arises from the delay pole and a very high value of Kcut is necessary for
its migration from infinity to the imaginary axis. This explains a jump in the chatter frequency in Fig. 8
between 2700 and 2840 rev/min. Thus, very high chatter frequencies at certain spindle speeds can be attributed
to the instability of the delay pole. The cases of 2700 and 8000 rev/min are not qualitatively similar. For the
former, the delay pole is contributing to instability and for the latter, the structural pole is the reason behind
instability. The summary of this section is the following. The change in the spindle speed causes the poles and
the zeros of the delay to move and this changes the behavior of the root locus and the instability
characteristics. The high stability limits for certain spindle speeds (2700 and 2840 rev/min, i.e., regions 1 and 4
in Fig. 4) are explained by pole zero cancelation situations and instability due to the delay pole. The chatter
frequency for turning is always higher than the natural frequency, since there is no crossing of the imaginary
axis at frequencies lower than the natural frequency. High chatter frequencies, at certain spindle speeds, are
associated with the delay pole instability. This fact is not very obvious from the traditional stability analysis
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technique. Low stability regions are due to instability of the structural pole that is located closer to the
imaginary axis. Thus enhancement of structural damping (actively or passively) would shift the poles more to
the left, which would necessitate higher Kcut levels to destabilize the system. This observation confirms a
similar idea from Eq. (13) from a pole-zero perspective and substantiates the original motivation of using
active damping as a potential chatter reduction strategy. This is discussed in more detail in the next section.

4. Effect of active damping on chatter instability

The previous sections show that chatter can be stabilized by two methods: (a) by choosing a spindle speed,
where the phase between successive undulations is favorable (b) by enhancing the structural damping. Eqs. (12)
and (13) show that the two methods inherently affect the closed-loop system damping and thus stabilize the
system. Case (a) is the easiest way to avoid chatter since a highly stable region exists between regions 1 and 4 in
Fig. 4. The highly stable spindle speeds are regions where the closed-loop damping is least ‘‘degraded’’ by the
phase effect, as shown by Eq. (12). Online modification of spindle speed to this stable part of the stability lobe
diagram was first proposed by Weck et al. [24]. The idea has been developed into an automated chatter
recognition and spindle speed control system by sensing the acoustic signal from the cutting operation in Tlusty
et al. [25,26]. Soliman et al. [27] present a control system that ramps up the spindle speed until a stable machining
situation is reached. Another technique of chatter stabilization is by spindle speed modulation, as proposed in
Refs. [28–30], etc., where the spindle speed is varied periodically with a very low frequency.

Vibration control is another strategy to suppress chatter instability. Dohner et al. [31] propose a pole-
placement strategy using a LQG controller and strain gage sensors and electrostrictive actuators for milling.
Smart fluids such as electrorheological or magnetorheological fluids have been used for chatter suppression in
Wang et al. [32] and Segalman et al. [33]. Feedforward and adaptive control strategies are proposed in
Nachtigal [34,35] and Browning et al. [36] for chatter suppression in boring bars. Passive damping of chatter
has been attempted through the ‘‘Lanchester’’ damper [37], impact dampers in Ref. [38] and tuned mass
dampers in Ref. [39]. But the amount of damping achievable is limited and the performance of tuned mass
dampers depends on the accurate tuning between the damper frequency and the structural modal frequency.
In the present work the active damping strategy with collocated sensor and actuator configuration is proposed
for regenerative chatter stabilization. A detailed study on active damping is presented in Preumont [40].
A collocated sensor and actuator configuration ensures an alternate pole-zero configuration of the structure in
the complex plane and this ensures unconditional stability in the closed loop, Miu [41], Preumont [40],
provided the sensor and actuator dynamics are neglected. Even in the presence of sensor or actuator dynamics
it can be shown that collocated active damping strategy fulfils the objective of enhancing modal damping of
the structure [42]. Active damping by velocity feedback does not require a very accurate model of the structure
and can be considered to be a broad band vibration control strategy. In the current work, a velocity feedback
strategy is implemented similar to the works of Cowley et al. [43] and Tewani et al. [44]. Referring to Eqs. (12)
and (13) for the SISO system, if the velocity at the tool contact point is fed back, then the enhanced stability
limit is given by,

K lim ¼ �ðcþ gÞ
oc

sinocT
, (14)

where g is the feedback gain. The recent experimental studies on active damping of the machine tool for
chatter reduction can be found in Pratt et al. [19] and Harms et al. [45]. Sims et al. [46,47] apply active damping
on the workpiece and Ganguli et al. [22] demonstrate the effect of active damping with a mechatronic chatter
demonstrator. The stability lobes are plotted for two arbitrary values of feedback gain in Fig. 10a, for the
SISO example. The damping of the structure in the two cases are 8:7% and 16%. A general rise in the stability
limits is observed. It is also observed in Fig. 10b that active damping changes the frequency of chatter.

The factor of enhancement at various spindle speeds is now investigated. In Fig. 11a, the ratio between the
limiting cutting stiffness for two values of feedback gains and the corresponding value without any active
damping is plotted. It is found that the enhancement of stability limit is the highest for the low stability
regions, such as 3790 rev/min. For spindle speeds of 2700, 2840 and 8000 rev/min, with originally high stability
limits, the factor of enhancement is not impressive. This can be explained again by referring to Fig. 11b, which
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Fig. 10. (a) Comparison of stability lobes with and without active damping, structural mode (-) delay (y) and (b) chatter frequencies with

and without active damping.
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is a plot of oc= sinocT for the different values of the active damping feedback gain. It is observed that for the
high stability regions, there is a reduction in the absolute value of the quantity due to changes in the chatter
frequency. This counteracts the effect of increased damping due to the feedback gain g in Eq. (14) and
therefore affects the factor of increase in stability. In the case of spindle speeds, where the original stability
limit is low (e.g. 3790 rev/min), the change in the value of oc= sinocT is negligible. The stability limit directly
depends on the damping, coefficient. Therefore, the factor of increase in the low spindle speed cases is much
higher in comparison to that in the high stability regions of the stability lobe diagram. This explains the non-
uniform relative enhancements due to active damping for different spindle speeds.

The effect of active damping can also be demonstrated by Root Locus plots. The general effect of active
damping is to shift the structural pole towards the left, due to enhanced damping. This implies that a higher
cutting stiffness is necessary to make the system unstable, causing a rise in the stability limit. There is an
increase in chatter frequency, due to the application of active damping, as are the cases for 8000 and 3790 rev/
min in Figs. 12a and b. The structural pole crosses the imaginary axis at higher frequencies than the chatter
frequency without active damping and this explains the change in the chatter frequencies in Fig. 10b. The
relative increase in the length of the closed-loop locus of the structural pole, due to active damping, is higher in
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Fig. 11. (a) Ratio of stability limits with and without active damping for chosen spindle speeds and (b) effect of active damping on

oc= sinocT for various spindle speeds; gain values g ¼ 0 (y), g ¼ 250 (- - -), g ¼ 500 (-).
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Fig. 12b than in 12a. In Fig. 12c, the situation is close to a pole zero cancellation, as described in the previous
section. It is interesting to see that due to active damping, the structural pole no longer becomes unstable. The
delay pole triggers the instability. Thus active damping may change the nature of the instability. For 2700 rev/
min in Fig. 12d, the delay pole becomes unstable with or without active damping, since the structural pole
remains on the left side of the complex plane.

Certain observations can be made from the Root Locus plots. The structural poles are affected more by the
application of active damping than the delay poles. For the low stability regions like 3790 rev/min, active
damping is relatively more effective in enhancing the stability limit than in the high stability regions. The delay
poles, due to distant location from the imaginary axis do not undergo any appreciable change in damping.
Therefore, the relative enhancement of stability is much higher in the low stability regions than the highly
stable regions.

5. Conclusion

This paper presents a relationship between regenerative chatter instability and structural damping. The
traditional stability analysis technique is reviewed and it is shown that the stability depends on two physical
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Fig. 12. Effect of active damping for (a) 8000 rev/min, (b) 3790 rev/min, (c) 2840 rev/min and (d) 2700 rev/min.
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parameters: the structural damping in the system and the spindle speed that controls phase difference between
successive modulations of the chip thickness, or in other words, the shape of the chip. The correlation between
different shapes of the chip and the stability lobes is explained. Both of these parameters affect the closed-loop
system damping; enhancement of structural damping is shown to have a proportional effect on the stability
limits, change of spindle speeds may cause a favorable or unfavorable phase difference between successive
modulations which affect the closed-loop damping and the stability limit. Normally for a machine
tool–workpiece system with a dominant natural frequency, regions where the spindle speed frequency is equal
to the natural frequency are the highly stable machining areas. Root Locus plots are used to present a pole-
zero perspective of the same idea. Highly stable regions of the stability lobe diagrams are found to be due to
pole-zero cancelation between the structural pole and the delay zero or due to instability of the far located
delay pole. Low stability regions are characterized by instability of a structural pole that is located close to the
imaginary axis. This implies that enhancement of structural damping would result in higher stability limits in
the low stability region areas.

Active damping with velocity feedback is adopted as the chatter control strategy in the present study. Active
damping is found to affect both the structural damping and the phase difference between successive
modulations of the chip thickness. The damping enhancement is predominant in the low stability regions of
the stability lobe diagram, which results in a high rise in the stability limit. For high stability regions, the effect
of active damping is counterbalanced by the change in the phase difference, resulting in a lesser improvement
of the stability limit. The observation is substantiated by Root Locus plots which show that structural poles
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are affected more by active damping than delay poles. This implies that low stability limit regions would be
enhanced more than the originally high stability regions due to active damping. The idea of utilizing active
damping for regenerative chatter control has been recently implemented in the SMARTOOL project
(www.smartool.org) funded by the European Commission.
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